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ABSTRACT

The sensitivity of oceanic sound transmissions to the choice of a sound-

speed profile is analyzed using ray theory. The profile may be selected

from a large depth-dependent collection which models the deep ocean sound

channel. Sound propagation is examined between fixed source and receiver,

both close to horizontal ocean boundaries, for ranges up to about 50 km.

Given a specified profile, procedures are prescribed for constructing a

second, simpler profile so that important acoustic quantities are virtually

identical. The construction methods are easy to apply, have physical in-

terpretations, and identify the critical aspects of profile data which

influence transmissions. The ray geometries associated with the two pro-

files are shown to be very close. Useful formulas are derived which

demonstrate that per-ray and total-field phases and amplitudes correspond-

ing to the simpler profile approximate accurately those of the specified
A.

profile. Schemes are presented for determining range intervals for

*-. replacement of the given profile, based on specified tolerances for phase

and amplitude differences. Thus, when our procedure is applied, propa-/1 4o

gation results are not sensitive to the type of profile selected. N I
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INTRODUCTION

The investigation of any oceanic sound transmission problem requires

the prior specification of a sound-speed structure in some way, such as by

fitting data. We address an important sensitivity issue which has received

little or no attention previously. We seek methods to replace a specified

sound-speed profile by a simpler type of profile so that significant

acoustic quantities with the two profiles are negligibly different. Pre-

vious sensitivity studies have noted differences that can be caused by

sound-speed variations. For instance, an investigation of the sensitivity

of ray theory to small changes in environmental data documents large changes

in transmission loss at ranges less than 20 km resulting from small,

randomly perturbed variations in a linear profile. For another example,

one portion of a study2 concerned with propagation loss in shallow water

displays large variations in normal-mode transmission loss at ranges from

10 km to 100 km, that are associated with a family of decreasing profiles

having the same average gradient. In addition, there has been much pub-

lished concerning the relative advantages of one type of sound-speed

profile over others, as for instance in Refs. 3-7. Indeed, one trend among

such studies has been different from our aim, in the sense of advocating

for various reasons the replacement of one type of sound-speed profile by

a more complicated type. For example, the discovery8 of possible inaccu-

.~tracies in acoustic intensity for special transmission situations caused by

-. slope discontinuities in piecewise-linear sound-speed profiles supported

the use of more elaborate profiles with curved segments. Our motivation is

not inconsistent with such results, but is, rather, to specify situations

and find methods for the replacement of given profiles by simpler ones.

PS- There are several important advantages of effecting the replacement
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of a given profile by an acoustically equivalent, simpler one. First,

formulas for significant acoustic quantities may be made more convenient,

useful, and easily interpreted. Second, the simpler profile, along with

the concomitant procedure for its construction, identifies the critical

aspects of profile data which influence transmission results. For example,

with the profile types and particular transmission problems considered
'

here, the depth average of the profile data as well as data near particular

ocean depths turn out to be critical. Therefore, it is these features of

the data, rather than the individual data points themselves, that must be

modeled by the sound-speed profile in a transmission problem. A third

advantage is connected to the fact that, in many propagation studies which

analyze the influence of complicated environmental phenomena on sound

transmissions, it is essential to make various simplifying assumptions.

Typically, these include modeling the sound-speed distribution for the

ocean region of interest with a relatively simple type of profile. For

<example, bilinear approximations to sound-speed structures have been used

4to analyze short-range acoustic transmission in cyclonic eddiese and long-

"- range SOFAR transmission fluctuations produced by a Rossby wave.9 Thus,

sound-speed profile replacement results of the type in this paper offer an

obvious means for extending conclusions and predictions of propagation

studies, which assume a relatively simple profile, to situations with more

complicated and realistic profiles.

We consider here a fairly general class of depth-dependent sound-

speed profiles which characterize the deep-ocean sound channel. This

channel has been long recognized as a principal feature of the sound-speed

distribution in many regions of the abyssal oceans. The issue of profile-

V -.
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replacement sensitivity becomes of special and practical significance for

the sound channel, in view of the rich abundance of distinct profiles

developed over the years to describe it. Some of these profiles, contain-

ing various parameters, are the bilinear, 0 multilinear,11 hyperbolic-

linear, 12 parabolic, 13 squared index of refraction quadratic, 14 Eckart, 15

and those contained in Refs. 4-7. The collection of deep-ocean channel

profiles we consider also includes those which can be constructed numeri-

cally by interpolation. 
1 6

We assume in this study that the ocean boundaries are horizontal.

This assumption, along with that of no horizontal or temporal variation

in sound-speed structure, comprise a fundamental model of sound transmis-

sion through a deep-ocean sound channel, from which more complicated

models are developed by perturbations. Thus, positive profile-replacement

sensitivity results for this situation can be anticipated to be germane to

a variety of more complicated models. We employ ray theory and focus in

this initial investigation on surface/bottom reflecting transmissions up

to intermediate ranges between a source and receiver, each of which is

located on or near either of the ocean boundaries. Our study can be

extended to include a variety of source-receiver positions not on or near

the ocean boundaries, different types of ray propagation, and larger

transmission ranges. Such extensions, which involve both generalizations

of our procedures here and new methods for constructing simpler replacement

profiles, will be presented in future work.

We present one scheme in Sec. I for constructing from a specified

sound-channel profile its simpler comparison profile of bilinear type. The

ray geometries associated 4th these two profiles are shown to be very close.

VIn Sec. II per-ray phases and amplitudes for the two profiles are demon-

","--
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strated to correspond closely, when the source-receiver range is not too

large. Useful approximate formulas for per-ray phase and amplitude

differences are developed to describe allowable ranges, for specified

source frequency and acceptable phase-and-amplitude-difference tolerances.

These per-ray results can be extended to longer transmission ranges, as

described in Sec. III. A different method for choosing a bilinear com-

parison profile is presented there, in which the comparison profile is

modified slightly at each longer range. In Sec. IV we compare received

total fields associated with the specified sound-channel profile and its

simpler comparison profile. Approximate formulas are presented for total-

field phase and amplitude differences, which facilitate the determination

"of those ranges where the total fields match closely. Finally, major

results are sumarized in Sec. V.

I. SOUND-SPEED PROFILES AND RAY GEOMETRY

A. Sensitivity problem formulation

We first specify the types of sound-speed profiles to be considered

in this investigation. These profiles c(z) depend on depth z only, de-

creasing from the ocean surface at z - 0 to a minimum sound speed at

positive depth z - za and then increasing to the ocean bottom at z - zb.

The surface, SOFAR-axis, and bottom sound speeds of c(z) are denoted by

cS, ca, and %, respectively. On 0 < z < zb we also require that c(z) be

continuous and piecewise continuously differentiable (i.e., possess a

continuous derivative except possibly at a finite number of depths). We

denote this collection of profiles by C. Since C is a quite general class,

including profiles which are concave up, piece-vise concave down, or of
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mixed concavity, it follows that typical depth-dependent, single-minimum

profiles (for example, those described or used in Refs. 4-7 and 10-16)

-: belong to C. We note that the procedures to be developed in this initial

study could be extended to apply to other types of prof*les.

- The sound source S and receiver R, separated by a horizontal dis-

tance R, are taken for simplicity to be located on the ocean boundaries.

We place the origin of our left-handed Cartesian coordinate system on the

ocean surface either at or above S; the iio1izontal coordinate x is positive

in the direction toward R, while the (depth) coordinate z is measured

positive downward. We restrict this study to ranges which are less than

that range Rc at which any of the rays is either tangent to one of the

ocean boundaries or has a horizontal turning point. If S and R are both

located on the ocean surface (or bottom), all rays for R < Rc are either

bottom reflected (BR) [or surface reflected (SR)] or surface-reflected/

V - bottom-reflected (SRBR) types. If S and R are located on opposite boun-

daries, all rays are either direct (D) or SRBR types for R < Rc . The size

of Rc depends on both the particular profile under consideration and the

boundary locations of S and R. The basic procedures for constructing the

simpler comparison profile from a given profile, and for determining those

ranges less than Rc where important acoustic quantities associated with

the two profiles correspond closely, are exactly the same for all such

source-receiver locations. Furthermore, results display the same qualita-

tive features. Therefore, we focus henceforth on the case where S and R

are both located on the ocean surface, and we use the results for this

F! case to obtain relevant conclusions for other cases.

As discussed in the Introduction, we formulate the sensitivity

............................. . ...... ... ...
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analysis by singling out one simple profile type from C which is then used

to compare with others in C. For this paper we choose to use a bilinear

comparison profile, with sound speed decreasing linearly from z = 0 to its

SOFAR-axis depth and then increasing linearly from this depth to z - zb.

From here on, any unbarred quantity will refer to a profile from the gen-

eral class C, while any barred quantity will refer to a comparison bilinear

profile. For any bilinear profile, there are four parameters required for

its specification which, for'bample, could be taken as Za, cs, ca, and 9.

The problem is to determine whether, and if so how, these parameters can

be chosen so that corresponding acoustic quantities from a profile in C

and from the comparison profile are negligibly different. We remark that

one reason for using a bilinear comparison profile is that this profile

10
type has been thoroughly analyzed. Another reason is the simplicity of

its ray geometry and of formulas for relevant acoustic quantities. We

emphasize, however, that our approach is sufficiently general to permit

straightforward extensions to the use of other types of comparison profiles.

B. Comparison profile: shorter ranges

We now present a method of constructing from a given c(z) CC a

single bilinear comparison profile, labeled c I(z), which may be used through-

out an entire interval of shorter source-receiver ranges. This profile

yields positive sensitivity results, in the sense that differences in cor-

responding acoustic quantities for the two profiles are insignificant. In

Sec. III we shall present a second procedure for construction of comparsion

profiles c11 (z) which provide positive sensitivity results over longer

transmission ranges. A quantitative characterization of shorter and longer



ranges will be given subsequently.

For any specified profile c(z) cC and for all source-receiver

boundary locations, the parameters of its unique, corresponding bilinear

comparison profile cW(z) are determined as follows:

(1) The depth-averaged sound speed of ci:(z) is set equal to that of

C(Z);

(2) the SOFAR-axis depth "a , the surface sound speed c , and the bottom

sound speed % of cI(z) are matched to those of c(z).

The first condition is crucial in the construction of the cI(z) profile,

giving

" . -b "'(z)dz " Il I% c(z)dz Zc. (la)

0 0

As we shall show in Sec. II, equality of the average sound speeds c. and

c1 serves to eliminate dominant terms in differences of per-ray acoustic

quantities from c(s) and cI(z). From Eq. (la) we obtain a simple equation

- relating the SOFAR-axis sound speed c and the three parameters mentioned
a

IR in the second condition:

caa [(.%-c)% z + 2cU-cb (b

The surface and bottom sound speeds of "1 (z) are matched to those of c(z)

(i.e., c - c and C, - c) primarily for two reasons. First, these con-

ditions are sufficient to guarantee that for any of the boundary locations

of S and R, the ray types and numbers of received rays associated with

cI(z) nd c(z) - e the same, for all ranges up to about Rc . Second, we

shall s.- that these conditions assist in reducing per-ray amplitude

differences. SOFAR-axis depths of I(z) and c(z) are matched (i.e., Za = Z a)

because we have determined that acoustic quantities in Sec. II are relatively



insensitive to the choice of z . It follows from Eq. (Ib) and the matchingsa

of the second step that the four parameters of the bilinear profile c (z)

are uniquely specified. Thus, we write

c I W (2a)
::: I(Z '= gt.(Z-zb)+ c% z a < z < b , 2a

where

u =(ca-es)/za gl= (%cb)/(zb-za) .(2b)

The critical aspects of sound-spead profile data which are used to specify

a c(z) profile in this situation are now apparent. The construction pro-

cedure for the cI(z) profile implies that data near the surface, SOFAR

axis and bottom are clearly important. Also, the role of the sound speed

c over the entire ocean depth identifies the data mean as critical.

We illustrate our procedures with a hyperbolic-linear sound-speed pro-

file, 12 consisting of a combination of linear and hyperbolic-cosine func-

tions and, for simplicity, select equal surface and bottom sound speeds.

The solid curve in Fig. l(a) is a graph of the c (H )(z) profile, given by

gZ +c , 0< z < z u

cacosh(ku(z-z)] , z < z < z a
c (z)- (a)

c cosh(k ,(z-z z < z < zb

g,(z-zb) + c <Z< Zb

We use the same numerical values for Z a,zap zC, cs, and ca as in Ref. 17.

Also, we compute the upper linear slope gu, the parameter ku, and the upper

(H) (H)
joining sound speed c - c (z ) by matching values and slopes of c (z) atu u

z zu , and similarly at z - zt. Parameter values (to six significant digits) are
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listed in the second column of Table I. If S and R are both located on the

ocean surface or the ocean bottom, R is equal to 69.0 km for the c (H) (z)C

p. profile; if S and R are located on opposite boundaries, R is equal to 34.5
c

km. We can now readily determine the corresponding shorter-range bilinear

- -(H)
comparison profile c (z). From Eqs. (1) and (3a),

c = 2c -c , (3b)
as

where

. ' : cl= (2)-i[ (Cu2+Cs22a2 gul + [(2ca2C2C2 glc (3c)

-(H)Values of all c I((z) parameters appear in the third column of Table I.

The profile c I (z) is given by Eq. (2a), and is the dashed curve in Fig.

(la).

C. Ray geometry

Both the c(z) and cI(z) profiles have the same numbers of received

ray types for all ranges up to about R . As further indications of thec

close similarities between ray geometries associated with c(z) and its

comparison bilinear profile, we present approximations for ray angles. The

primary importance of these results is for the subsequent development of

useful formulas for per-ray phase and amplitude differences. For surfaced

S and R, we let SN for N > 1 denote the SRBR ray which has N bottom reflec-

tions between S and R, and SI, the BR ray. Our formulas for acoustic

quantities, associated with varius rays in the case of S and R on the ocean

surface, can be adapted to the cases with S and R on opposite boundaries

if 2N is replaced by 2N - 1 for N > 1. Similarly, for the case of bottomed

LS and R, our formulas remain essentially the same if N is interpreted as

the number of surface reflections between S and R.

L



10

Our first approximation is concerned with the initial angles, esN

and sN, of rays SN and SN' respectively, between surfaced S and R. All

ray angles in this paper are measured positive clockwise from the x-axis,

as displayed in Fig. l(b) on the first half-lobes of rays SN and SN"

- 18Using depth as the ray parameter, the range equations for SN and SN are

R(e) = 2N f b c(z)[cs2sec2sN c(z) 2 (4a)sNsc 8  - cdz)(4a)d
0

and

R(ON) 2N f c" -(z)c 2 sec - -() dz. (4b)
sN0 c1(z

Combining Eqs. (4a) and (4b) for fixed range R, we have

F(eN) =R(N) - R(6sN) = 0. (5)
sNsNs

Expanding F(6 ) to linear terms about ss = ', and substituting the re-

sN 4 T sN , ndsbtuin
sulting expression in Eq. (5), we obtain

s =T - F N) /F  N). (6a)

After applying the weighted mean value theorem for integrals19 to F (6sN),

using Eq. (4a), and evaluating the resulting expression at e i sN' T e

have

F 2 c ec- taneN(c2 sec6 - ]R , (6b)

where cv = c(v)for some fixed V such that 0 < V < zb. Using Eq. (4b) to

evaluate F(6sN) and substituting Eq. (6b) in Eq. (6a), we arrive at

8N e s [l-(c V/c )s N ]Cote s (AR/R), 6

where

AR F R-R(OsN) (6d)



and R(O sN) denotes the range equation for ray SN evaluated at the initial

angle for ray SN' To obtain upper and lower bounds for the magnitude of

the angle correction in Eq. (6c), the second term on the right, we can

simply set c. = ca and cv M cm - max (Cc, %), respectively. After approx-

o* imating this second term by the average of the upper and lower approxima-

tions, we write

e ~6 + (7a)
sN sN YN

where

S+ {l-[c )/2c 2]cos N )cot (AR/R). (7b)
N l[a m s SN sN

Using, for example, the c(H)(z) and -4cl)(z) profiles described in

Part B, we found that the right side of Eq. (6c) is an excellent approxi-

mation for all N > 1 and all ranges R up to about 40 km. For instance, we

determined 8sl using a numerical root-finding method on the c(u)(z) range

sl. quaio12 an sl frman explicit formula.10 The numerical calculation

for sl agreed with the approximation of Eq. (7a) to at least five signifi-

cant digits. Thus, 0s closely approximates 6sN for this example, as suggested

in Fig. 1(b). Equation (6a) is expected to represent a good approximation

for rays associated with other profiles in C, and we conclude that the

initial angles for all rays associated with the c(z) and ci(z) profiles

are close for shorter ranges. The same conclusions can be shown to hold

for other ray angles, such as those at the ocean bottom. Other approxima-

tions for relevant quantities involving the initial angles may be estab-

lished readily using Eq. (7a). For example, an approximation required in

Secs. IIB and IIIB concerns the ratio of the tangents of the initial angles,

S given by

.7
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tane N/tanOsN -" 1 + (8a)

where

-YNtan N ec~N (8b)

We now present a second approximation for 0 which will be helpful

aN

in deriving qualitative information concerning per-ray amplitude differences

in Sec. II B. It can be shown that the matching of average and surface

sound speeds of c(z) and c (z) permits simplification of the quantity AR

in Eq. (6d). If this simplification is inserted into YN in Eq. (7b), we

obtain an approximation for 0sN, which is valid for the shorter ranges

where ci(z) is useful, of the form

sN -WsN +rN' (9a)

where
hrer [zb/(R/2N)]I,{l-[(c 2+C 2)/2c2]Cos N)cot40 (9b)

N b 8 a m s sN sN (b

and

1 Zb-f b ['(z) 2c(z) 2/ dz (9
0

We remark that, since the sign of rN depends only on the dimensionless

constant Is, Eq. (9a) can be used to determine whether 0 is greater or

less than 6 for shorter ranges. For our previous numerical comparison
sN

(H) -(H)of c (z) and c (z), for example, I has the positive value of 1.32 xI
5S

10- , so we conclude that -SN > es.N, as shown in Fig. l(b). This small

numerical value of I is typical of other c(z) and c (z) profiles, although

the sign of I may, of course, differ.

w* . % % *, ,/ , . % , . , ., .* , . .-- .. ,. .., . .-. .. . . . .,, ,, . , , • : , , . . . . . . , .
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11. PER-RAY RESULTS: SHORTER RANGES

The source S is assumed to emit an omnidirectional cw signal pro-

portional to sin( 2ft ), where f is frequency in Hz. A ray will arrive at

the receiver R in the form %sin[27 (ft - #N)], where % is the relative

amplitude owing to spreading and bottom losses (we neglect all other losses,

including those due to attenuation and scattering). The phase #N (in cycles)

•I "is assumed to differ from that at the source because of travel time and

phase shifts at boundary reflections. In this section we discuss per-ray

phase and amplitude differences of rays associated with the c(z) and c IZ)

profiles, for an interval of shorter S-R ranges, where the latter profile

yields positive sensitivity results.

A. Per-ray phase comparisons

The quantities T and a (or T. and F) are travel times and phase

shifts at each bottom reflection of rays associated with c(z) [or c (z)].

We have
# - fTN - [(N-l)/21] - N1' (10)

and similarly for *N' where the second term on the right side of Eq. (10)

accounts for phase shifts at surface reflections. The expression for per-

ray phase difference is

N N N W * f (Ts - ) - N(aN K (11)

In Sec. IC we showed that the values of bottom angles of rays associated

with c(z) and c (z) are very close. Since the bottom sound speeds of c(a)

and c I(z) are matched, we can approximate A#N by

AN & f(TN - TN) - f&rN" (12)

As a numerical illustration, we computed #N for rays associated with the

c(H) (z) and I1 ) (z) profiles using Eqs. (11) and (12) and Rayleigh reflec-

*. . . . . . . . . . . . . .
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tion theory.20  (References 10 and 12 provide the relevant travel-time

formulas, and bottom parameter values are given in Sec. IIB .) For a

source frequency of 200 Hz and for ranges up to about 69 km, Eqs. (11)

and (12) differed very little, at most in the third significant figure.

The close match between Eqs. (11) and (12) is not expected to depend on

the particular bottom-interaction model selected.

We next derive an important approximation for AON in Eq. (12),

which enables us to determine readily a range interval on which all per-

ray phases associated with c(z) and cI(z) correspond closely. Let 6 be

the dimensionless quantity defined by 6 E (ca - c )c -1 , one measure of

the difference between the c(z) and cI(z) profiles. Since 6 is small and

ray geometries for c(z) and cI(z) are very close, we can find an approxi-

mation for the travel-time difference from Ref. 21. We note the identity

C (z) - c (z)c -1 + 6[cW , (z)I(c - a (13a)

choose c (z) as the unperturbed state in the formalism of Ref. 21, lnd

apply Eq. (13a) and a depth ray parametrization to Eq. (9) of Ref. 21 to

obtain

[AT N 2N [CI(z)-c(z)c I(z) -2 N, (13b)

where O is the Snell's law constant for ray S. For our purpose we found
N N*

it convenient to specify RN by

S"sec N' (14a)

where c is given by Eq. Cla) and F is the angle along the ray SN whichii )JN
corresponds to the value c U" Using the identity

c1 (z) - c. [l+(z)], (14b)

r~Ii

................................



where

f(z)E f (z)-cJ (140)

t ~and substituting Eqs. (14) into the denominator of the integrand of Eq. (13b),

we may write

Zb -2 2ATN  - 2N fJ [C (Z)-C(z)]{C [l+C(Z)J} (1-{cOS [1+C(z)]}2) dz. (15)
N I 14 )IN

- By expanding the integrand in Eq. (15) as a aclaurin series in T, noting

that the leading term vanishes because of the equal average sound speeds

of c(z) and c (z), and using Eq. (12) we obtain the key approximate formula

A* N 3& 2N (fz/)I G(FN) (16a)

where

o-1 ft- 2 -2(1)
z 0 I ( Z) -c I(z)ctz))/c Udz(1b

and

-(M iN)/sin3N" 1160

In order to locate those ranges where ;N closely approximates *N' we
first use Eq. (16a), a much simpler expression than Eq. (12), to describe

the qualitative behavior of AO . For fixed N and increasing R, it follows
N

from the behavior of G in Eq. (16c) that if I is positive (or negative),

then A N is an increasing (or decreasing) function of range, from negative

(or positive) through zero to positive (or negative) values. Moreover, it

can be shown using Eq. (16a) [or Eq. (11)] and Eqs. (4) that A N is equal
N

to a product of N and a function of N/R. This implies that the zeros of A N

as N varies are equally spaced in range; i.e, that AO - 0, where

" "4.'' " " " " .. . ' ' " "" " '"" i * '~ :
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denotes the range at which AfI vanishes. In order to avoid near-source

effects, we do not consider ranges which are less than, say, 1 km. It

follows from Eq. (16a) that for 1 < A < R1, the AfN are all of the same

sign, and, for a fixed N, IAN I achieves its maximum value at 1 km.
NNFinally, we note that for very short ranges, IA*NI] increases in a manner

proportional to N.

To illustrate the qualitative behavior of A*N and the accuracy of

the approximation Eq. (16a), we computed per-ray phase differences as-

(H) -(H)sociated with the c (z) and c )(z) profiles from 1 km up to about R -

69 km. The source frequency for our examples is 200 Hz, and the rays

with significant amplitudes at these ranges, as determined in the next

subsection, are N - 1 to 4. We display in Fig. 2 the graphs of AI' A*2 F

and Af3 up to about 30 km. The solid (or dashed) curves describe exact

(or approximate) per-ray phase differences which are computed using Eq. (111

[r Eq. (16a]. These curves indicate that AO for all N is small up to
N

about 20 km. We note the generally high accuracy of the Eq. (16a) approx-

imation to Eq. (11), in this case for which I (-8.05 x 10-6 ) is positive..

All curves in Fig. 2, as well as numerical calculations up to Rc , show

that A N increases from negative to positive values as R increases, for all

N. Finally, we note that the previously described qualitative behaviour of

ON at ranges less than R - 14.3 km is illustrated in Fig. 2. For instance,

at ranges less than 4 kn, IA*NI increases in a manner which is proportional

'4 to N.

Since AON is predicted by Eq. (16a) to vanish at some range, it

follows that, for each N and for some range interval, *N and fN correspond

very closely. On the other hand, 'a N' gets unacceptably large for suffi-

ciently long ranges. This growth obviously becomes most severe for the

t'
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DR CH - 1) rays well before any SIR rays (with N > 1), as can be observed

in F'ig. 2. We use this fact to determine a maximum range value, K , for

which the per-ray phases of all rays associated with c (z) acceptably

P
approximate those of c(z). Let qP be a phase tolerance. To determine1 ,

v take V - I and R > R in oq. (16a) and set

, lA, - 1. (17)

The Mn-tonicity of A# N guarantees that there is a unique value Iwhich

solves sq. (17) and which increases with qP. Letting a be defined by

(f% /cf,, XP I P and i E sinYl, noting that 0 < "< /13 corres-

ponds to R > 21 , and substituting 0 and X into Eq. (17), then we obtainC:
i" -+ 2 -m 0. (lsa)

W Ior 0 < a < %s, we note that the solution 3 to Eq. (18a) takes the form2 2

- %1- 11
Q 3 2 + -k--a€2 ) ]3 + 2(a2)]3 .. (18b)

'.

We comine the solution X1 to Eq. (18a) with the range equation" for the

DR ray associated with cI(x) to determine the upper range limit RI ,

'k.* ~ 1 2~~ 1  -- 1) 2- 2) 'si-1l 2 - 2)'4 -1W 2 - 2)'s1
IN' L~ 2~ a(9 +gj(0 cb u 1 aI~cs)I (19a)

;- whor
, -.,-. (19b)

lFor the determination of a lover range limit RL , the phase tolerance qL

should be chosen more strictly than q. (for example, qL - qP/2), because

of the previously mentioned fact that I O.I increases with N for very

*short ranges. Since l0,1 achieves its maximu value at 1 km for ranges

less than R , the method for the computation of RL is as follows: if
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atR- 1 km is less than or equal to q, choob4. -- 1 km; otherwise,

set - qL and compute RL in exactly the same manner as Rj .

Given any profile c(z) in C, we have developed a straightforward,

analftical procedure using Eq. (16a) for determining a range interval

[RL, R ] in which the per-ray phases associated with c (z) approximate

acceptably well those associated with c(z). We illustrate this interval

by means of the c(H) (z) and -(Hz) profiles. For the upper (and lower)

phase tolerance, we select qp - 0.05 cycles (and - 0.025 cycles) and

use our procedure to find that, for a source frequency of 200 Hz, [R, RP] =

[1 km, 20.0 km]. Since the dashed curve has been computed in this

example, range intervals corresponding to these and other tolerance levels

P
may also be obtained graphically from Fig. 2. That is, is that range

greater than .1 which corresponds to the ordinate value Iq P - q, and

is obtained similarly. Finally, we remark that, although AO associated

with the BR rays continues to grow rapidly for R > RI in this particular

example, the A N for N > 1 remain small for a significant range interval

P
beyond Rj. This feature, of having only a single dramatically growing

per-ray phase difference, can be shown by our qualitative discussion to

apply to other profiles in C, and leads to an extension of positive per-ray

phase sensitivity results to longer ranges in Sec. III.

B. Per-ray amplitude comparisons

To compare amplitude differences between corresponding rays asso-

ciated with a c(z) profile and its bilinear counterpart cI (z), we first

develop an approximation analogous to that of Eq. (16a) for phase. For

any ray S , the amplitude at the receiver relative to that at a unit dis-

tance from the source is given by
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A. (20)

and similarly for A, where (I/Ix)N and BN represent the geometric

spreading loss and loss per bottom reflection. We shall neglect differ-

ences in bottom losses of rays SN and SN for the same reasons, i.e., very

close bottom angles and equal bottom sound speeds, that we neglected bottom

Li phase-shift differences previously. We also ignore differences in the

Snell's law constants c = c seces and W = s sec s here, another veryN s 9N N s sN

good approximation which is based on the fact that c = c and results of5 5

Sec. IC. After computing the geometric spreading losses 2 3 and invoking

our approximations, we have

AN/ Y (tan , (21a)

where 3 3 -

I b r 21 7 )(fzbc 2Q i f- (Z) {l- [; (Z) c (Z) {l- [c (Z) iN2 } dzi (21b)0 1 IN 0

If we substitute the identity

c z) - c [l+A(z)], (22a)

L where

. .'. Alz) -[clz)- -- 112b
A()SICZ-c , (22b)

and similar ones for c (z) and A(z), into the denominator of the integrand

of Eq. (21b), retain linear terms in A(z) and E(z), and use the equal

r. average mound speeds of c(z) and c (z), we find

Y - [hl+()/(l+y)I (23a)

where

cy t-cot fc(z)/ ]A(z)dz}, (23b)
0

9- , - • • r . . . . . . . . . . . . .. . . . .-,, 
- -

,,, "- .,,, ."",,,, "- "Z ,, ,," "' -
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and similarly for y. Then, if we expand the right side of Eq. (23a) in a

Taylor series about (y,y) = (0,0) and substitute this expansion and Eq.

(8a) into Eq. (21a), we obtain an approximation for AN/A in the form

AN/AN = i+T, (24a)

.. where

TI tN (24b)

Xct2- (24c)• .. ~~ Kcot2 ,Oc

K s !( IF )I (24d)

and sand Is are given by Eqs. (8b) and (9c), respectively. For any

specific c(z) and c I(z) profiles, Ks is a constant which we anticipate is

small in magnitude because I is small. For example, in the case of the

(H) -(H) -5c (z) and c I (z profiles, K 2.02 x 10 . We easily establish fromi ". S

Eq. (24a) the important approximation for the per-ray amplitude anomaly

ALN (in dB),

AL N E 20 logo1 0 (AN/%) - nN ,  (25)

where d - 20/(log 10)- 8.69. It can be shown that the approximation in
e

Eq. (25) is close for all N and for somewhat longer ranges than that in

Eq. (16a).

We use the convenient approximation of Eq. (25) to specify those

ranges where A and A correspond closely for all N. At very short ranges

(i.e., very steep initial angles), Eq. (25) shows that all per-ray ampli-

tude anomalies are negligible, so that we can choose the minimum range

for which A and A correspond closely as 1 km. Turning next to a deter-

mination of a corresponding maximum range, we note certain qualitative
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features of AL. It can be shown with the aid of Eq. (9a) that EN and 1N'

p which appear in Eq. (25), both depend in the same way on the sign of Is .

Therefore, for all N and any R, A% is of the same sign as Is . If we fix

R and vary N, then EN and CN will be greatest in magnitude for the ray with

the most shallow initial angle. Since & and C are both of the same sign,
N N4

we conclude that for a fixed range, the greatest per-ray amplitude anomaly

predicted by Eq. (25) occurs for the (BR) N = 1 rays. If we fix N and

vary R, then by similar reasoning IALNI is an increasing function of range.

Insofar as these qualitative features of ALN depend on Eq. (9a), they are
N

certainly valid for the ranges where R < RI, but in fact they are often

true for longer ranges as well. From these qualitative results, we base

Athe determination of a maximum range limit 1 on the BR rays. Given a

Aper-ray amplitude tolerance qA' we determine R1 via Eq. (25) by setting

IAL1 1 - qA" Since JAL1I is an increasing function of range, there is a
Aunique value of R which solves this equation and increases with qA- There-

fore, A approximates % acceptably well for all N for ranges in the interval

P ASince we have two upper limits Rand 1 for application of the

c I(z) comparison profile, the question naturally arises as to which value
I

C. is smaller and thus more restrictive. We next present convincing numeri-

A
cal evidence that even for moderately small values of qA' RI is typically

P (H)much greater than R,. We computed AL1 associated with the C (z) and
c(H (z) profiles using both the exact formulas in Eq. (20), which include

t. bottom losses, and the approximation Eq. (25). Rayleigh reflection theory

was used as the bottom loss model, with numerical values1
2 of 1757.17 ms-1

for the ocean bottom sound speed and 0.525 (and 0.877) for the ratio of

water to bottom densities (and sound speeds). If we employ a typical
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criterion that a ray with N bounces is significant if AN/A > 0.01, then for

the c (H) (z) and (H) (z) profiles, this condition is satisfied for all rays

N < 4 up to about R - 69 km. For this example, the solid (and dashed) curves
C

in Fig. 3 represent the exact (and approximate) per-ray amplitude anomalies,

in dB, for the N = 1 and 2 rays for ranges up Lo 45 km. The N = 3 and 4

curves are not displayed because their anomalies are extremely small. An

important result from Fig. 3 is that the per-ray amplitude anomalies for all

prays are insignificant, not only up to R = 20 km but also up to and well be-

yond 45 km as well. In addition, the dashed-curve approximations are very

close to the solid curves for all ranges in Fig. 3. There is a sharp increase

in the solid N = 1 (and N = 2) curve, followed by a discontinuity, at a range

of about 16.5 km (and 33.1 km), where the bottom angles of the N = 1 (and

N = 2) rays approach their critical values in Rayleigh reflection theory.

Although for each N the ranges associated with the critical bottom angles of

corresponding rays are close, they are not exactly equal. The particular

Rayleigh bottom-loss model used in our calculations for the solid curves in

.; Fig. 3 overmagnifies the bottom-loss differences at these ranges, and, con-

sequently, the per-ray amplitude anomalies. A more refined bottom-interaction

model would not be expected to produce such conspicuous differences. With the

exception of these features due to the bottom-interaction model, we note that

Fig. 3 illustrates all the qualitative variations of AL with N and R discussedN

above for the case of Is positive. For instance, for each N, ALN is positive

and increases with range, while for each R, IALNI decreases with N. Selecting

A-to be 0.4 d, we find that is equal to 52. 2 km, a substantially larger

value than R- 20.0 km in this example. If we define R= min(R.I, RA), then

all per-ray phases and relative amplitudes associated with c(z) and c(z) are

b°
0

.

. -.
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acceptably close for the shorter ranges in the interval [R, R ]. Although it

P A
is a simple matter to consider either the case of R= R or that of R R I ,I

based on our numerical examples we shall restrict ourselves hereafter to the

highly probable case that R= R.

With the procedure specified for determining the shorter-range inter-

val [RL, R,1] for the case of S and R on the ocean surface, results for other

source-receiver boundary locations follow readily. We note first that the

key formulas Eqs. (16a) and (25) fqr the case of surfaced S and R can be

adapted without essential change to the other cases. Second, the crucial

*.! role of phase and amplitude differences between the BR rays for surfaced S

and R is replaced by those between the SR (or D) rays for S and R on the

* bottom (or on opposite boundaries). For simplicity here, we consider only

the highly probable occurrence that per-ray phase differences alone determinea
the shorter-range intervals. If S and R are both located on the ocean bottom,

* -then Eq. (16a) holds if N is interpreted as the number of surface reflections.

Thus, the shorter-range interval is exactly the same as [Rt, R I ] for surfaced

. S and R. Similar reasoning shows that the travel-time difference for the D

rays at range R/2 is exactly half that of both the BR and SR rays at range R.

We can then argue that if S and R are on opposite boundaries, the size of the

shorter-range interval is more than half the size of [%, RI], extending from

less than max(l, R/2) to more than R /2. This interval is the same whetherI

"" S is on the surface and R is on the bottom, or vice-versa. Therefore, deter-

mination of the range interval for acceptable correspondence between per-ray

quantities associated with the two sound-speed profiles can be effected for

any near-boundary locations of S and R.
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III. PER-RAY RESULTS: LONGER RANGES

A. Comparison Profile

The main difficulty in extending the close correspondence of per-ray

acoustic quantities, associated with the c(z) and c I(z) profiles, to ranges

longer than RI is the unacceptably large values of Vi" However, we recall

that there is one range value R1 , Which is less than Ri, for which Ac 1 van-

ishes. This suggests that at a range R > Ri, a slight perturbation of the

c I(z) profile could perhaps shift R, to coincide with R. This idea motivaL.

a scheme to construct a different bilinear comparison prof;! for 5.,4 range

R > RI. We indicate members of the family of bilinear co..parison profiles,

one for each range, by c ii(z).

For a specific c(z) profile and range R > Ri, the parameters of the

cii(z) profile are determined as follows:

(l) The phases of the BR (or N = 1) rays for the two profiles are set

equal;

(2) the depth-averaged sound speeds of the two profiles are set equal:

(3) the difference between the surface and bottom sound speeds of ciI (z)

is equal to that of c(z), i.e.,

Cb-C = cb-cs; (26a)

49 (4) the SOFAR-axis depths of the profiles are equal, i.e.,

za =z a. (26b)

We note that SR (or D) is substituted for BR in condition (1) in order to

specify the c (z) profile for S and R on the ocean bottom (or on opposite

I"
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boundaries). Also, conditions (2) and (4) were selected for the same reasons

as in the construction of the c I(z) profile in Sec. IB, and condition

(3) is weaker than that used for c I(z) in order to permit imposition of con-

dition (1). Finally, we remark that our construction procedure identifies

important information for the selection or specification of a c(z) profile

at longer ranges. Condition (1) identifies the phase of the ray with the

largest amplitude as significant , while conditions (2) - (4) identify the

same critical aspects of the profile data as those noted earlier for shorter

ranges.

* Condition (2) is given by Eq. (la) with c i(z) written in place of

c I (z). If Eqs. (26a) and (26b) are substituted in Eq. (lb), then an expression

for ca of the c (z profile is obtained:

1I - = [(cb-c s ) zb- ]z a+ 2cV -c - (Cb-Cs). (26c)

.. We recognize from Eqs. (26) that Z, -Cb, and ca depend only on c s and known

c(z) parameters. Moreover, for a fixed R > RI and a given c(z) profile, the

phase i of the BR ray associated with c(z) can be calculated analytically or

numerically. Therefore, c can be determined by condition (1):

,-,) 0, (27)

where the other bilinear profile parameters are regarded as functions of c
s

only. The formula for c i(z) is then given by Eqs. (2) with cs and C written

" in place of cs and cb. Eq. (27) is assumed to have a solution cs close to cs,

which we have verified by analysis which will not be presented here. We re-

gard c to be close to c if
s s

I "
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From Eqs. (26a), (26c), and (28), it follows that % is close to cb and that

the SOFAR-axis sound speeds of the C I(z) and c i(z) profiles are close. There-

fore, the c ii(z) profile at each longer range can be regarded as a small per-

turbation of the ci(z) profile for the given c(z) in C.I

The solution c5 of Eq. (27) varies in a complicated manner with range,

- because c is close to c while simultaneously A l(cs) was shown in Sec. IIA

. to increase significantly at longer ranges. We therefore propose that Eq.

(27) be solved numerically for each R > R, using Eq. (12), i.e., using exact

travel-time formulas. Thus, Eq. (27) becomes

T 1 (C = T1 0 (29)

where T is known and T1 (cs ) can be found in Ref. 10. Bottom phase-shift
11

*differences are neglected in Eq. (29) for the same reasons they were omitted

in Sec. IIA. We have found that Newton's method for solving Eq. (29) is

-' adequate for speed and high accuracy, and that c provides an acceptable
5

. initial estimating value for c . We note that Eq. (29) and its analogues for
5

other source-receiver boundary locations only contain travel times. By argu-

ments similar to those given at the end of Sec. II, we conclude that the cii(z)

profile for R > R, is exactly the same for S and R on the surface as for S and

R on the bottom. Similarly. we conclude that the cii(z) profile for R more

than R,/2 is exactly the same for S on the surface and R on the bottom, as for

¢[ S on the bottom and R on the surface.

We have determined that c(H) (z) profile from the c(H) (z) profile for

* ranges greater than R, = 20 km up to about R - 69 km. The value of c for
Ic a-'-(H) -l

I the c (z) profile varies between a minimum of 1540.05 ms and a maximum of

-l -1
1540.86 ms-I This indicates that c < c (-1541.50 ms ) in this example for

all R > RI. For all values of cs, the left side of Eq. (28) is less than .0.027,
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so we conclude that c is close to c for the c (z) profile when RI < R < Rc.

PSince cb- c for our particular example c (H) (z) profile, - - for the (z)

profile. The value of ca, computed from Eq. (26c), varies between a minimum of
i:i-l -1

1482.54 ms and a maximum of 1483.35 s . Thus, at any range, the graph of

-(H) -Hc (z) is very close to that of the _(H)(z) profile displayed in Fig. (la).

As we noted, condition (3) is weaker than the corresponding require-

ment imposed on the c (z) profile. However, it is sufficient to guarantee an
I

equal number of received rays of identical type for the two c(z) and c II(z)

profiles, for ranges up to about R . Moreover, the formulas in Eqs. (7a) andc

(8a), which apply without modification to the c(z) and c (z) profiles, repre-

sent good approximations at longer ranges. We conclude that the geometry and

angles of corresponding rays associated with the c(z) and ci(z) profiles can

be shown to be very close for all source-receiver boundary locations. The

verification of this important result proceeds as in Sec. IC, so we omit the

details here.

B. Per-ray comparisons

We recall from subsection A that the difference between the phases

" of the (BR) N - 1 rays for the c(z) and c (z) profiles is identically zeroII

when R > R,. We now present approximationsto A*N, N > 2, and use them to

demonstrate that these phase differences remain acceptably small over a sub-

stantial range interval beginning at R and ending at some range RI" Since

we found c i(z) to be a small perturbation off cI(z), the discussion in Sec.

IIA of A4can be applied here with minor modifications. Specifically, the

assumptions and expansions used to derive Eq. (16a) are easily seen to hold

for N > 2 in a longer range context, so that

~J

I.i
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- 2N[(fzb)/c I G(F' ), N > 2, (30a)

where

-1 ,'zb 2-2
" z- [c (z) 2 -c (z)c(z)]/c dz (30b)
a n II II a

and

aN aN aN

The quantity 8 N in Eqs. (30a) and (30c) designates the angle of the Nth ray

at the SOFAR axis associated with c (Z). All the conclusions in Sec. IIA

concerning the qualitative behavior of % for N > 2 can also be shown to hold

here for R > RI via Eq. (30a). For instance, if I is positive (or negative),I .a

then for a fixed N > 2, AON increases (or decreases) from negative (or positive)

values through zero to large positive (or negative) values. We also conclude

from Eq. (30a) that '-ON' gets large at sufficiently long ranges for any given

. N, and that the growth becomes most severe for the N 2 rays well before any

rays with N > 2. This implies that given some phase tolerance, such as q.

P pwhich was used to specify R1 , the determination of the range Rlshould be

p
based on the N - 2 rays. Specifically, RI is found among the ranges beyond

which A2 vanishes and is that range at which 1A02 1 - qP, where "2 is given2

by Eq. (30a).

To illustrate our results and the accuracy of Eq. (30a), we computed

per-ray phase differences associated with the cc ( z) and c (z) profiles

from RI - 20 km up to about R - 69 km. The rays with significant amplitudes
c

at these ranges are, as in Sec. II, N - 1 to 4. We display in Fig. 4 graphs

of A* for N - 1 to 3 from 20 to 52 km. The solid curves give exact values
N
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of A N computed from Eq. (11) as described in Sec. IIA, while the dashed

curves give approximate values, determined from Eq. (30a), of AON for N - 2

" and 3. The qualitative behavior described previously for AON is illustrated

in Fig. 4 for a case where I in Eq. (30a) is positive. All curves in Fig.
a a

*.. 4 as well as calculations for show that for each N > 1 is small

for a substantial range interval beginning at R. The approximations for

*- N > 2 are seen to be very close over all ranges shown. It is important to

s stress that there is a significant drop in magnitude of AO for all N and
w-(H) -(H)

R > I, when the c (z) comparison profile is used in place of the c I (z)

comparison profile. The biggest decrease, of course, occurs for N = 1 be-

cause of the construction of the c (H)(z) profile, but the decrease in magni-

"- tude is noteworthy for N > 2 as well. These trends can be appreciated by

comparing the relatively smaller values of A$ in Fig. 4, for 20 to 30 km,

to those in Fig. 2. Using the same value of 0.05 cycles for q as

in Sec. IIA, we find that R = 45.2 km for this example. Therefore, for our

II

selected tolerance and a source frequency of 200 Hz, the comparison profile

(H) (H)
c 1i (z) provides acceptable per-ray phase approximations to c (z) for

ranges in the interval (R1 , Ri] = (20 km, 45.2 km].

We next briefly discuss the determination of a range interval (R,, R A
II

in which all amplitudes associated with corresponding rays of the c(z) and

c i (z) profiles agree closely. Again, because c (z) is a small perturbation
_off c I(z), the formulas of Eqs. (24) and (25) for AN/ and ALN N > 1, can

oa N c

be applied here. It can be shown that for each value of N, the range of valid-

ity of these approximations generally includes those ranges where AL is small.
N

As in Sec. IIB, the determination of RI should be based on the N- 1 rays,

which typically display the largest per-ray amplitude anomaly for R > RI . Thus,

€........
" ,"... .... ...."""""",'""oJ''''' ;" "" .'"// 2 - -."'..:-' :. . ".
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if qA is the amplitude tolerance (in dB), we determine I as the range at

which iALI) -qA where AL1 is given by Eq. (25).

We computed per-ray amplitude anomalies for rays associated with the

(H) -Hc (z) and cII (z) profiles. The solid curves in Fig. 5 give exact values

of ALN (in dB), for N -1 to 3 and 20 km < R < 52 kin, including bottom losses

and calculated as described in Sec. IIB. These curves indicate that for all

N in this example, ALN is small for a significant range interval beginning

at R,. The cause for the increases, followed by discontinuities in the N = 2

and 3 solid curves, is the same as that given for Fig. 3. The dashed curves

in Fig. 5 are approximations for AL., computed using the analogue of Eq. (25)

for R > RI . The approximation for AL1 is quite good from 20 km to 40 km and

fairly good from 40 km to 45 km. The N =2 (and N 3) dashed curve is a good

approximation from 20 km to 33.1 (and 49.7) km, in which interval bottom losses

:. occur, and is an excellent approximation from 33.1 (and 49.7) km to 52 km,

where there are no bottom losses. Thus, the difference in accuracy of these

approximations as range varies is consistent with the fact that the difference

in bottom losses for the two profiles is neglected in Eq. (25). We note that

all dashed curves in Fig. 5 display the same qualitative features as the

dashed curves in Fig. 3; i.e., they increase with range, and for a fixed range,

they decrease as N increases. Using, for example, the tolerance qA= 0.4 dB,

A (H) -Hit follows that R 45.4 km for the c (z) and c (z) profiles.it fllos tat II

P A
We define = min(R I) and conclude that all per-ray phases and

amplitudes associated with a c (z) profile acceptably approximate their coun-

terparts for a c(z) profile at any range in the interval (RI, RI. In our

numerical example, for a source frequency of 200 Hz and our selected tolerances,

(RI, RII] - (20.0 kim, 45.2 km]. The extension of our results to other boundary

"oA
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locations of S and R proceeds in a similar fashion to that indicated at the

end of Sec. II. In particular, recalling that the cII(z) profile for R > RI

is the same for bottomed S and R as for surfaced S and R, we conclude that

(R, RII] is the same interval in these two cases. Similarly, if S and R

are located on opposite boundaries, the longer range intervals are the same.

extending from more than R1/2 to more than Ri/2. In summary (when S and R

are located on the same boundary), we define for any c(z) profile its overall

bilinear comparison profile as

SI W L< R L < RI

C = (31)
c IIZ W RI < R < RII.

For any given range in [RL, RIi] this simpler profile c(z) has per-ray phases

and amplitudes which agree, to within specified tolerances, with those of

corresponding rays associated with the given profile.
4.,

IV. TOTAL FIELD

In this section we investigate the total-field phase and amplitude

differences for ranges in [L, RI ] , associated with the c(z) and c(z) pro-

files. With a source emitting an omnidirectional cw signal, the total field

at the receiver associated with a c(z) profile is

Nmax
Asin [21T(ft-0)] Z A sin[2I(ft- N)], (32)

Nsl NN

r.. and similarly with A, 0, AN, and $ corresponding to c(z). The quantities
ON

A and 0 represent the total-field amplitude and phase, respectively, and the

integer Nmax is the nunber of significant rays. Expressions for AN and

in Eq. (32) are given by Eqs. (20) and (10), respectively. The total-field

." 

,.
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amplitude and phase are determined from

Nmax 2 max 2(
A = [ E Asin(2k 2)] + [ . A cos(2 N (33a)

N=i N=l

and

n1-- Nmax
sin(27TT) A 1 Asin( 21 N), cos (274) = A- ANcos (2VrN), (33b)

N=l N=l

respectively, and similarly for A and 0. If we define AA E A - A, the total-

field logarithmic amplitude anomaly (in dE) is

AL E 201ogl0 (A/A) = 201og1 0 (l+AA/A). (34a)

The total-field phase difference (in cycles) is

A R -, (34b)

and is represented here by values on the interval [-;, ] cycles.

The total-field phase and amplitude differences depend only on per-ray

phases and amplitudes, corresponding values of which for each N are close on

[RL, RII]. However, this fact alone is not sufficient to guarantee that At

and AL are small for all ranges in [RL, Rui], since small differences in

individual quantities might conceivably combine so as to make At or AL not

negligible. On the other hand, from our previous results we can expect that

per-ray differences are particularly small on [R., R1 (and a substantial

range subinterval of (RI, RII3). Therefore, for many c(z) profiles, positive

total-field sensitivity results can be anticipated for a sizable portion of

[R.L, R 11J1.

To facilitate the determination of those ranges where total-field

phase and amplitude differences are small, we seek to present simple approx-

imations for At and AL. We define the dimensionless quantity £M for M p N

-MN
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as the phase-perturbation difference in radians between rays M and N,

" MN E 2W(A*M-AO N I < M, N<N (35a)14 N - --max

We also define N as the difference in radians between the phase of ray N- N
. :and the total-field phase using the c(z) profile:

S.-2(N-) , 1 < N < N (35b)
N,. max

* We note that in our subsequent development, WC is not required to be small.
N

Our approximations for AO and AL involve a generalization of those presented

for the cases Nmax = 2 and 3 in Ref. 25, for which three assumptions are em-

ployed: (1) The CMN quantities are sufficiently small compared to one; (.2)

'- AA/A is small enough so that the total-field equations may be expanded in

this quantity; and (3) % can be approximated by AN for all N. The first

assumption is satisfied in our situation because we showed in Secs. II and

. III that on [RL, RiI] all per-ray phase differences are small and vary with

range in a monotone fashion. The second assumption holds because we employ

the approximations where. A and AL are small and because from Eq. (34a) AL

is small if and only if AA/A is small. The third assumption is certainly

true on [RL, RI], where all per-ray amplitude differences are insignificant,

" as well as for some portions of the range interval (R,, R, ] where per-ray

amplitude differences are relatively small. We improve the approximation to

*AL in Ref. 25 by not requiring (3), above, but rather that differences in

per-ray amplitudes [or, equivalently, that ALN in Eq. (25)] are small. A

similar modification could be effected for the approximation to Al; however,

* . from numerical calculations, this change improves the accuracy of the AO

approximation very little, so we omit this modification here.

. . , , . , *. . , . - . .. -. - -. -. . . . . . . . ° . _ - .- i - . .- . . / . . . . - , ,
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Our approximations for any range in [RL, RIll are

-1~Nax
(2r) A)COS( ), (36)

Mi_ NE1 MN
N11M

and

Mmax Nia
AL & dl E C (A )sin(RI)+ H(R-RI) E1  (AN/)COS(6N)]. (37)

Ni1 MN N N4 1141 N N
N#M

In Eqs. (36) and (37), M is any fixed integer between 1 and Nmax, is given

by Eq. (24b), d is specified below Eq. (25), and H denotes the Heaviside func-

tion. We do not give the rather lengthy derivation of Eqs. (36) and (37) for

arbitrary Na, remarking only that the skew-symmetry of E (i.e., E = - E
max"U NM

enables any choice of M in these equations to yield the same values for AO and

* AL. On (RI, RII] the quantity AOI appearing in Eqs. (36) and (37) is zero,

while all other per-ray phase differences which appear there are represented

on [RL, RI] (or (RI, RII]) by the approximations of Eq.(16a) (or Eq. (30a)1. The

use of approximate, rather than exact, per-ray phase difference formulas in our

total-field phase- (and amplitude-) difference approximation is numerically

fully satisfactory at most ranges in [L, RII] where AO (and AL) is small. How-

ever, as R approaches R, (or RII) the critical A01 (or A02 ) approximation is

typically an overestimate [see, for example, Fig. 2 (or Fig. 4) from 15-20 km

(or 33-45.2 km)), which could cause Eqs. (36) and (37) to overestimate the sizes

of the total-field phase and amplitude differences. We note that Eqs. (36) and

(37) are valid under suitably weak assumptions which permit their application

both to other sensitivity problems and also to situations where environmental

or other variations produce small relative changes in phases and/or amplitudes

of individual ray arrivals.
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Before applying our approximations for AO and AL to determine ranges

where total-field phase and amplitude using the profile c(z) are acceptably

close to those for c(z), we first discuss some features of them via an ex-

.. (H)
ample. Using-the hyperbolic-linear profile c (z) of Fig. l(a), its bilinear

comparison profile -(H)(z), and a source frequency of 200 Hz, we calculated

exact (and approximate) values of A and AL on [RL, ai = [1 kin, 45.2 km]

. from Eqs. (34b) and (34a) [and Eqs. (36) and (37)], with N = 4. Both 60
max

and AL oscillate rapidly as range varies, so their values were computed with

. - range increments of 0.01 km, with several additional calculations using 0.001

km increments to check the less refined results. Figure 6 (and 7) shows graphs

of upper and lower bounds for At (and AL) associated with the c(H) (z) and

-(H)c (z) profiles, for ranges from 1 km to 40 km. These exact (solid curves)

and approximate (dashed curves) bounds are obtained by interpolating through

the computed maximum and minimum values of At and AL on 1 km intervals. The

discontinuities in the bounds occuring in both Figs. 6 and 7 at R = 20 km
arsewe - (H) -srplcdb (H)

arise wherec I(z) is replaced by c (z). A schematic sample of the graph

of At (and AL) itself is included in Fig. 6 (and 7) from 9-13 km (and 9-13 km

and 26-30 kin), although At (and AL) actually oscillates more rapidly than sug-

gested in the schematic. We stress that despite these characteristic noise-

- . like fluctuations, both At and AL typically assume alues on any given range

interval which are significantly greater than their lower bounds and smaller

than their upper bounds.

We focus next on the At results in Fig. 6. The bounds show clearly that

At is small for all ranges shown in Fig. 6. Moreover, we see that At is minis-

cule (A01I < 0.004 cycles) from 20 km to about 32 km, the range interval where

per-ray phase differences are smallest for this example (see Fig. 4). If the
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curve in Fig. 2 were superimposed on Fig. 6 from 1 to 20 km, it would lie

between the bounds in Fig. 6. This clear qualitative and quantitative simi-

larity between AI and AO indicates that at least for shorter ranges, AO tends

to be dominated by the first rays. Thus, taking M = 1 in Eq. (36) for ranges

in [RL, RI], we note that the first term oa the right side of Eq. (36) is the

more significant. The bound approximations are seen from Fig. 6 to be very

good from 1 km to about 34 kin, and to deteriorate somewhat beyond 34 km. We

note that the overestimate of IAOI by Eq. (36), mentioned previously, occurs

in the dashed lower bound beyond 34 km. This overestimate of the approximate

AO bounds and the fact that JA01 typically assumes values significantly less

than these bounds should be taken into account when the acceptable tolerance

Q for total-field phase differences is selected. Recalling our choice of qp

for the per-ray phase difference tolerance, we select Qp= 0.10 cycles. We,

therefore, conclude via Eq. (36) that the total-field phase using the profile

-(H) (H)
c (z) acceptably approximates that using c (z) on the entire interval

[RL, RI = [1 km, 45.2 km].

Before discussing the total-field amplitude anomaly in Fig. 7, we give

an example from another transmission problem which shows that propagation-

loss differences can be large for profiles which possess very similar features.

In one portion of a study2 mentioned earlier, shallow-water propagation losses

associated with eight decreasing profiles composed of linear segments are com-

pared. All of these profiles possess the same surface and bottom sound speed

and average gradient. Depth-averaged normal-mode propagation losses (inco-

herently summed) for these profiles were computed for a water depth of 100 m,

ranges up to 100 km, and a source frequency of 200 Hz. Propagation-loss

differences among these profiles amounted to as much as 3 dB at 20 km, 10 dB at

50 km, and 20 dB at 100 km. Returning to the total-field amplitude anomaly

. . . . . . . . . . .
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(H) -<(H)
for the c((z) and c (z) profiles, we see that Fig. 7 shows small values

of AL from 1 km to about 35 km. Very small values for AL(IALI <0.25 dB) occur

over the same range interval, 20-32 km, and for the same reason that A$ has its

smallest values. On the other hand, above about 33 km, values for IALI become

large fairly rapidly. The behavior of ALat these ranges can be attributed to

the combined effects of increasing per-ray phase (principally A02) as well as

Si.amplitude (principally AL1 ) differences. In constrast, such volatile growth

does not occur for ranges below RI, because only per-ray phase differences sig-

nificantly affect AL at these ranges. The occurrence of non-negligible per-ray

amplitude differences on (R, RII ] , following their absence on [Ri, Ri], suggests

an explanation for the upward shift of the bounds curves on (RI, RII], following

S."their near-symmetry on [RL, RI1]. In fact, the midpoints between the bounds in

* Fig. 7 are positive and increase with range on (RI, R11], in a manner entirely

consistent with the qualitative behavior of AL in Fig. 5. We also note that
1

the dashed curves in Fig. 7 are very good approximations to the exact bounds

from 1 km to about 33 km and deteriorate beyond 33 km. As with the total-

field phase difference, the overestimate of the approximations in Fig. 7

occurs here also. Taking into account the overestimates of the approximate

: "AL formulas and the fact that JAL I assumes values that are typically much less

than these bounds, we select a tota]-field amplitude tolerance QA of twice q

or 0.8 dB. Then, we can conclude via Eq. (37) that the total-field amplitude

--(H)(Husing the profile c (z) acceptably approximates that of c(H)(z) for ranges

on the interval [1 km, 33.3 km]. Combined with our discussion of total-field

phase for this example, this conclusion extends to the entire received total

field. Finally, we note that the range interval crf acceptable total-field
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correspondence in this example coincides largely with ranges where either

"- per-ray phase or amplitude differences are insignificant, as might be ex-

" . pected.

V. SUMMARY

In this paper we present methods to replace a given sound-speed pro-

file in certain transmission problems by a simpler profile so that corres-

ponding acoustic quantities are negligibly different. The profiles considered

here belong to a general class of depth-dependent, single-minimum profiles

which model the deep-ocean sound channel. Using ray theory, we investigate

surface reflecting/bottom reflecting transmissions between fixed source and

*- receiver located on or near the ocean boundaries and separated by a short-to-

medium range distance. We focus on procedures for constructing a simpler,

comparison profile of bilinear type, but the principal features of our tech-

nique are sufficiently general to allow extensions to other types of comparison

profiles.

For shorter ranges, the bilinear comparison profile is constructed by

settj-ig its depth-averaged sound speed equal to that of the specified profile.

In addition, the SOFAR-axis depth and the surface and bottom sound speeds of

the two profiles are matched. This method identifies the sound-speed data

mean, along with profile data near certain ocean depths, as critical in

determining the characteristics of received transmissions. Thus, when results

of our analysis apply, key properties of the data, rather than the accurate

matching of a sound-speed profile at all data points, are primary. The ray

geometries associated with the specified and comparison profiles are shown to

be very close. In particular, at each range under consideration, there is

exactly the same number of received rays of each type associated with each
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profile, and the surface and bottom angles and the Snell's law constants of

U Wcorresponding rays are nearly identical. As a consequence of the method of

constructing the comparison profile, the per-ray phases and amplitudes asso-

ciated with the comparison profile approximate well those of the specified

Sm profile on some interval of shorter ranges. Relatively simple analytical

approximations to the differences in per-ray phases and amplitudes between

-. :the two profiles are developed. Among other uses, these approximations lead

to an easy way for determining precisely the aforementioned interval of

- .. shorter ranges, as a function of cw source frequency and of specified toler-

ances of acceptable phase and amplitude differences.

These conclusions, which can be referred to as positive per-ray sen-

sitivity results, are then extended to longer ranges by means of a different

procedure for construction of a bilinear comparison profile. The key element

of the extension is to choose a bilinear profile so that the per-ray phase

difference is negligible for the rays with the minimum number of boundary

reflections. Other conditions for the determination of the comparison profile

* are the same as for the shorter-range case except that only the difference

between the surface and bottom sound speeds is matched, rather than the values

themselves. The longer-range bilinear comparison profile, which differs slightly

depending on the source-receiver range, is found to be a small perturbation of

,- the shorter-range comparison profile. Therefore, the ray geometries as well

as the per-ray phases and amplitudes associated with a specified profile and

its comparison profile remain very close. Useful per-ray phase and amplitude

difference approximations are presented which specify the range interval where

the per-ray quantities correspond closely. The overall length of the range

interval is shown to be the same, provided the sound source and receiver are
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located on the same ocean boundary. For a typical sound-channel profile con-

sisting of linear and hyperbolic-cosine segments, this interval extends from

1 km to 45.2 km. If the source and receiver are located on opposite ocean

boundaries, the interval of positive per-ray sensitivity results is more than

half the length of that when the source and receiver are on the same boundary.

Comparisons of the received total field for a specified profile and its

bilinear replacement profile are also performed. Simple approximate formulas

are presented for total-field phase and amplitude differences between the two

profiles; these formulas represent a major extension of previously known results.

The approximations are general enough to be applicable both to other sensiti-

.- vity problems and to studies where environmental or other variations produce

small relative changes in acoustic quantities of individual ray arrivals. The

approximation are exploited here to construct accurate upper and lower bounds

for total-field differences. The bounds are shown to be small for ranges

where per-ray results match closely. Further, they determine those ranges of

acceptably good total-field correspondence, which for a typical example and

for reasonable tolerance criteria are [1 km, 45.2 kin] (and [1 kin, 33.3 kin])

for total-field phases (and amplitudes).

In future work the authors plan to extend the techniques and results of

this initial investigation to study sound-speed profile replacement for other

acoustic configurations. These may include varieties of given and comparison

profiles, longer source-receiver ranges, source and receiver locations away

from ocean boundaries, other types of ray transmissions, situations involving

receiving arrays as well as point receivers, and different ocean boundary

models. For such problems, we expect that well-approximating the ray geometry

and per-ray acoustic quantities associated with the given profile would have an
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important impact on the choice of both comparison profile type and its parameters.

IU It is also anticipated that simple approximation to acoustic differences in

° oindividual ray quantities and in total-field variations would assist in formu-

lating the construction procedure for the comparison profile and in specifying

i its range of utility.
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FIGURE LEGENDS

Fig. 1. (a) Hyperbolic-linear sound-speed profile c (z) and shorter range

bilinear comparison profile c (z). (b) First half-lobes of corres-

ponding rays.

* Fig. 2. Exact (solid) and approximate (dashed) per-ray phase differences

(cycles) vs. range (kin) for N = 1 to 3 rays corresponding to c (z)

-(H)and c (z) profiles. Frequency f = 200 Hz.

Fig. 3. Exact (solid) and approximate (dashed) per-ray amplitude differences

(H)
(d) vs. range (kin) for N - 1 and 2 rays corresponding to c (z)

and c I (z) profiles.

* Fig. 4. Exact (solid) and approximate (dashed) per-ray phase differences
- (H)
(cycles) vs. range (km) for N = 1 to 3 rays corresponding to c (z)

-(H)c i) (z) profiles. Frequency f = 200 Hz.

Fig. 5. Exact (solid) and approximate (dashed) per-ray amplitude differences

(dB) vs. range (kin) for N = 1 to 3 rays corresponding to c(H (z) and

-(H)c(II (z) profiles.

* Fig. 6. Exact (solid) and approximate (dashed) bounds for total-field phase

(H) -(H)
difference (cycles) vs. range (km) corresponding to c (z) and c (z

profiles. Frequency f = 200 Hz.

" Fig. 7. Exact (solid) and approximate (dashed) bounds for total-field ampli-

(H)
tude difference (d) vs. range (km) corresponding to c (z) and

c (z) profiles. Frequency f = 200 Hz.
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